PRODUCTION AUTOMATIQUE DE COURBES DE NIVEAU À PARTIR DE PHOTOGRAPHIES AÉRIENNES

Par Philippe GUIAVARCH, Edouard BEAUVILLAIN, Olivier JAMET
Laboratoire MATIS - Direction Technique
Institut Géographique National - 2, Avenue Pasteur - 94160 Saint-Mandé

Cette étude a pour but de définir une méthode automatique de calcul de courbes de niveau, afin d' être intégrée dans les chaînes de production de la base de données topographiques de l'IGN (BDTopo®). Actuellement, le thème altimétrique de la BDTopo® est obtenu par restitution des courbes sur appareils analytiques (sur clichés à l'échelle du 1:30000), mais la perspective d'acquisition, à court terme, d'appareils numériques, nous permet d'envisager, dès à présent, de nouvelles techniques de production.

1 Introduction

Afin de définir une méthode de production de courbes de niveau, par des techniques numériques, une étude est en cours de réalisation à l'IGN. Le but de cette étude est d'évaluer la qualité du relief obtenu par différentes méthodes automatiques distinctes. Chacune de ces méthodes pouvait faire intervenir des techniques ou des étapes de calcul qui leur sont propres (par exemple corréditoires spécifiques). C'est en grande réelle est réalisée sur dix couples de photographies aériennes au 1:30000, chacun d'eux représentant un type de paysage différent (montagne, bocage, pérenne, urbain, ...). Les différentes méthodes analysées sont au nombre de quatre. L'exposé qui suit décrit l'une de ces méthodes sans chercher à évaluer des comparaisons avec les autres applications analysées. Il est à noter que cette méthode n'est pas figée, et que des modifications peuvent tout à fait y être introduites.

2 Approche de la méthode

2.1 Les données en entrée

Il est nécessaire de tenir compte, le plus possible, des données existantes, aussi bien pour s'affranchir d'un travail supplémentaire qui peut s'avérer être redondant avec ce qui a déjà été fait, que pour tirer profit des informations connues à des fins d'amélioration ou du moins de sécurisation de la méthode.

Les données externes qui nous intéressent sont :
- les éléments de calibration de la chambre de prise de vue (focale de prise de vue, position calibrée des repères de têtes de chambre, distorsion, ...). Les coordonnées cartographiques des points terrain qui permettent d'effectuer l'orientation absolue du couple.
- les mesures clichés de tous les points de stéréopréparation ou d'aérotriangulation présentés sur le couple, ces points ayant déjà été mesurés lors du calcul de l'aérotriangulation. Cette récupération permettra d'éviter la fastidieuse tâche de mesure interactive des points terrain sur les images numériques.
- la couche planimétrique de la Base de Données Topographiques, si l'on considère que celle-ci est testée avant la détection du relief. Ces informations pourront être utilisés lors de la corrélation comme nous le verrons par la suite.

2.2 Les données en sortie

En sortie, on aura un ou plusieurs Modèles Numériques de Terrain (MNT brut de corrélation ou ayant subi des traitements spécifiques), et une planche de courbes de niveau.

3 Descriptif de la méthode

La méthode automatique de production de courbes de niveau présentée ici se compose des étapes suivantes :
3.1 Orientation du couple stéréoscopique

- Orientation interne : mesure des repères de fond de chambre sur l'image numérique. Les mesures sont effectuées entièrement automatiquement, une fois le premier repère positionné approximativement.

- Orientation relative : mesure automatique par corrélation d'un très grand nombre de points homologues (environ 1000 points par couple avec un résidu cliché moyen quadratique meilleur que le 1/10ème de la taille du pixel de numérisation).

- Orientation absolue : récupération des coordonnées clichés de tous les points mesurés lors de l'aérotélégraphie. Transformation de ces coordonnées dans le repère image en calculant une transformation par moindres carrés basée sur les fonds de chambre.

En utilisant toutes ces mesures dont l'obtention n'a quasiment pas nécessité d'intervention opératoire, on calcule tous les paramètres définissant la mise en place du couple.

3.2 Calcul épipolaire

Cette étape consiste à rectifier les images numérisées brutes en géométrie épipolaire, afin de diminuer le domaine de recherche lors de la corrélation ponctuelle.

Afin d'illustrer cet article, une zone test a été choisie (clichés au 1/30000, numérisés avec un pas de 50 microns, la taille du pixel au sol est donc de 1,50 mètres), dont l'image épipolaire gauche peut être vue en Figure 1.

3.3 Corrélation automatique

L'algorithme de corrélation automatique numérique [1] utilisé ici se sert comme indice de ressemblance du coefficient de corrélation linéaire.

A ce stade, différentes options nous sont offertes, aussi bien en ce qui concerne le choix des paramètres propres à la corrélation qu'en ce qui concerne la méthodologie employée.

Parlons tout d'abord des paramètres de la corrélation : différents paramètres tels que les tailles minimale et maximale de la fenêtre de corrélation, ou encore le seuil d'acceptation du coefficient de corrélation sont à définir, mais le paramètre qui aura le plus d'influence sur le traitement est le critère de pente qui impose un seuil minimal à la pente entre deux points corréls (il sera nécessaire d'autoriser des pentes plus fortes pour les terrains accidentés que pour les terrains sans grand reliefs). Pour des couples dont le type de paysage n'est pas homogène, il est possible de définir des zones pour lesquelles on appliquera des paramétrages particuliers.

La méthode choisie est importante et dépend en grande partie des caractéristiques du couple traité.

- Le choix de la résolution à laquelle on va travailler est très importante. Sur des couples difficiles on a intérêt à effectuer une corrélation à base résolution, afin d'avoir une valeur approchée de la parallaxe lors de la corrélation finale à pleine résolution.

- Il est intéressant, dans certain cas, d'utiliser la couche planimétrique de la BDTopo®, afin de fournir au corrélateur des indications pouvant lui être utiles. Deux types d'informations peuvent être introduites : d'une part, des éléments au sol de la BDTopo® (routes, chemins, ...) afin de donner au corrélateur une bonne approximation du sol en certains endroits ; d'autre part, des éléments de la BDTopo® appartenant au sur-sol (bâtiments, haies, ...) ou définissant des zones non corrélables (lac, ...) sont introduits afin d'interdire au corrélateur de traiter ces zones.

3.4 Lissage

Une fois la phase de corrélation terminée, il reste des zones qui n'ont pas été traitées. Il est nécessaire d'effec-tuer une interpolation sur ces zones afin que la parallaxe soit connue en tous points. Pour cela, on utilise la méthode de la grille élastique (voir [2]), qui va avoir pour effet, non seulement, de combler les parties non corrélées, mais aussi, de lisser l'ensemble des parallaxes.

3.5 Calcul du MNT

Le MNT est calculé au pas choisi (le MNT de la Figure 3 est calculé au pas de 1,50 mètres).

3.6 Traitements spécifiques

A ce stade on a un MNT « brut de corrélation », représentant la surface vue du terrain (Figure 3), auquel il va falloir appliquer des traitements afin d'en dériver des courbes de niveau représentant la surface topographique du terrain, cartographiquement acceptables pour la BDTopo®. Aussi bien en ce qui concerne la précision que les formes). Deux problèmes se posent alors à nous : d'une part la présence de sur-sol accidenté, et d'autre part, le niveau de détail trop important dans le MNT brut, qui aura pour effet de donner des courbes non acceptables (Figure 5).

Suivant les couples sur lesquels on travaille, différents traitements peuvent être envisagés :

- pour une zone peu vallonnée et ne possédant pas de sur-sol important, un simple lissage gaussien du MNT suffira pour que les courbes extraites de celui-ci aient un rendu cartographique satisfaisant.

- pour un couple comprenant des superstructures (bâtiments,...), ou un sur-sol naturel important (arbres, bosquets, ...), il est nécessaire d'appliquer au MNT un algorithme de détection du sur-sol afin de supprimer les zones du MNT correspondantes et d'af-fectuer une réinterpolation de ces zones (on peut distin-
4 Evaluation de la méthode

Cette chaîne de calcul de courbes de niveau pour la BDTopo® est encore au stade expérimental, il est nécessaire de pouvoir évaluer l'application de cette méthode (expérimentée précédemment) ou l'utilisation de tel ou tel paramètre, sur chaque type de terrain.

Cette méthode d'évaluation (décrue dans l'article «Évaluation d’un processus automatique de production de courbes de niveau») se base sur la comparaison des altitudes des éléments de la BDTopo® et l'altitude au même point sur le MNT.

Dans le tableau ci-dessous on pourra se faire une idée de l'amélioration de la précision du MNT suite aux traitements explicités ci-dessus.

<table>
<thead>
<tr>
<th>Introduction éléments au sol BDTopo® et masquage sur sol BDTopo®</th>
<th>Traitement</th>
<th>Détection et élimination du sursol</th>
<th>Détection et élimination du sursol et lisage</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNT 0 (Fig 3)</td>
<td>MNT 1</td>
<td>MNT en entrée</td>
<td>MNT 0 (Fig 3)</td>
</tr>
<tr>
<td>MNT 1</td>
<td>MNT en sortie</td>
<td>MNT 2</td>
<td>MNT 3 (Fig 4)</td>
</tr>
<tr>
<td>384</td>
<td>250</td>
<td>EMQ (cm)</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Remarque : EMQ représente l'erreur moyenne quadratique des différences d'altitudes entre les sommets des courbes de niveau de la BDTopo® et l'altitude correspondante interpolée dans le MNT que l'on évalue.)

Références.